Substrate	pKa H ₂ O (DMSO)	Substrate pKa	H ₂ O(DMSO)	Substrate	pKa H₂O	(DMSO)	Substrate	pKa H ₂ O (DMSO)
INORG	ANIC ACIDS	CARBOXYLIC	ACIDS	ALC	COHOLS		PROTONA	ATED SPECIES
H ₂ O H ₃ O ⁺	14.0 (32) 0.0	х он		HOH MeOH	14.0 15.5	(31.2) (27.9)	Ph N+OH	-12.4
H ₂ S HBr	7.00 -9.00 (0.9)	X= CH ₃ CH ₂ NO ₂ CH ₂ F	4.76 (12.3) 1.68 2.66	<i>i</i> -PrOH <i>t</i> -BuOH	16.5 17.0	(29.3) (29.4)	Ph	-7.8
HCI	-8.0 (1.8)	CH ₂ CI CH₂Br	2.86 2.86	c-hex₃COH CF₃CH₂OH	24.0 12.5	(23.5)	Ph CH ₃	-6.2
HF HOCI	3.17 (15) 7.5	CH ₂ I CHCl ₂	3.12 1.29	(CF ₃) ₂ CHOH C ₆ H ₅ OH		(18.2) (18.0)	H I	-6.5
HCIO₄ HCN	-10 9.4 (12.9)	CCl ₃ CF ₃ H	0.65 -0.25 3.77	m-O ₂ NC ₆ H ₄ (p-O ₂ NC ₆ H ₄ (OH 8.4	(10.8)	Ph Me H Ot Me	-3.8
HN ₃ HSCN	4.72 (7.9) 4.00	HO C ₆ H ₅	3.6, 10.3 4.2 (11.1)	<i>p</i> -OMeC ₆ H₄C 2-napthol	DH 10.2	(19.1) (17.1)	H O+-H	-2.05
H ₂ SO ₃	1.9, 7.21	<i>o</i> -O ₂ NC ₆ H₄ <i>m</i> -O ₂ NC ₆ H₄	2.17 2.45	OXIMES & HY	DROXAMIC	· · ·	Me ^{O†} H ⁺OH	-2.2
H₂SO₄	-3.0, 1.99	<i>p</i> -O ₂ NC ₆ H₄ <i>o</i> -CIC ₆ H₄	3.44 2.94	N OH	11.3	(20.1)	Me S Me	-1.8
H ₃ PO ₄ HNO ₃	2.12, 7.21, 12.32 -1.3	m -CIC $_6$ H $_4$ p -CIC $_6$ H $_4$	3.83	Ph O Ph O H	8.88 (NH)	(13.7)	N+-OH Me	0.79 (+1.63)
HNO ₂ H ₂ CrO ₄	3.29 -0.98, 6.50	<i>o</i> -(СН ₃) ₃ N+С ₆ Н <i>p</i> -(СН ₃) ₃ N+С ₆ Н	I ₄ 3.43	Ph		(18.5)	Me—N—OH I Me	(+5.55)
CH ₃ SO ₃ H	-2.6 (1.6)	<i>p</i> -OMeC ₆ H₄ o	4.47	Me			SULFINIC &	SULFONIC ACIDS
CF₃SO₃H	-14 (0.3)	ROH OH		PER	OXIDES		0,0	
NH ₄ CI	9.24	R= H	4.25	MeOOH	11.5		Me S OH	-2.6
B(OH) ₃ HOOH	9.23 11.6	trans-CO ₂ H cis-CO ₂ H	3.02, 4.38 1.92, 6.23	CH ₃ CO ₃ H	8.2		O II S OH	2.1

^{*}Values <0 for H_2O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods. The pka of water and H_3O^+ have been experimentally determined to be 14.0 and 0.0, respectively. Earlier values of 15.7 and -1.74, respectively are erroneous numbers proposed by scientists who made some errors in the calculated "rational" values. See: 1) *Helv. Chim. Acta* **2014**, *97*, 1. and 2) *J. Chem. Educ.* **2017**, *94*, 690.

Substrate pKa	a H ₂ O (DMSC) Substrate pKa H ₂ O (DMSO)	Substrate pKa H ₂ O (DMSO)	Substrate pKa H ₂ O (DMSO)
PROTONATED	NITROGEN	AMINES	IMIDES	HYDROXAMIC ACID & AMIDINES
N ⁺ H ₄	9.2 (10.5)	HN ₃ 4.7 (7.9)		O 8.88 (13.7)
EtN+H ₃	10.6	NH ₃ 38 (41) <i>i</i> -Pr ₂ NH (36 THF))	NH 8.30 NH (14.7)	Ph NOH (NH)
i-Pr ₂ N+H ₂	11.05	TMS2NH 26(THF) (30)		NSO ₂ Ph
Et ₃ N+H	10.75 (9.00)	$PhNH_{2}$ (30.6)	Ac ₂ NH (17.9)	$_{\rm R}$ $_{\rm NH_2}$ Ph (15.0)
PhN+H ₃	4.6 (3.6)	Ph ₂ NH (25.0) Me	SULFONAMIDE	
PhN+(Me) ₂ H	5.20 (2.50)	NCNH ₂ (16.9) NH (37)	1000000000000000000000000000000000000	HETEROCYCLES
Ph ₂ N+H ₂	0.78	NH (44)	Ph (16.1)	H (20.95) H (16.4)
2-napthal-N+H ₃	4.16	Me Me	CF ₃ 6.3 (9.7) (MeSO ₂ NHPh (12.9)	
$H_2NN^+H_3$	8.12	H ₂ N —√ N (26.5)	GUANIDINIUM,	H (11.9)
HON+H ₃	5.96		HYRDAZONES,- IDES, & -INES	NH (23.0)
Quinuclidine N+-H	11.0 (9.80)	AMIDES & CARBAMATES	N ⁺ H ₂ (13.6) NNH ₂ (21.6)	
Morpholine o	rH ₂ 8.36	O R= H (23.5) CH_3 15.1 (25.5) NH_2 Ph (23.3)	Me₂N NMe₂ Ph Me (18.9)	X = 0 (24) $X = S (13.3)$ $X = S (18.6)$
N-Me morpholine	7.38	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ph NHNH ₂	H X =
NO ₂		(urea) NH ₂ (26.9) OEt (24.8)	$\begin{array}{ccc} \text{PhSO}_2 \text{NHNH}_2 & (17.2) \\ \text{PhNHNHPh} & (26.1) \\ \hline \end{array}$	X = O(14.8) $X = S(11.8)$ $N = N (13.9)$
	-9.3	O O 12 (20.5)	PROTONATED HETEROCYCLES	X Y-0 (34.4)
NO ₂		Et N (21.6) O NH	N (12) (estimate)	X = 0 (24.4) $X = 0 (24.4)$ $X = 0 (27.0)$
DABCO	2.97, 8.82 (2.97, 8.93)	o Bn Q	DBO NH	N (19.8)
H ₃ N± +NH ₃ +ŅH ₃	6.90, 9.95	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DMAP Me ₂ N— NH 9.2 HN NH 6.95	H (29.4) H (16.5) Me N+ Me Pr
Proton Sponge	-9.0, 12.0 (, 7.50)	(15) O O O (12.1)	R R= H (PPTS) 5.21 (3.4) t-Bu 4.95 (0.90) Me 6.75 (4.46)	$N_{\text{N}^{+}} (18.4) \qquad N_{\text{N}^{+}} (24)$
PhCN+H	-10		R Cl, H 0.72	Me (10.4) We ViPr

*Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

pKa's of CH bonds in Hydrocarbons and Carbonyl Compounds

Substrate	pKa H ₂ O (DMSO)	Substrate pKa H ₂ O (DMSO)	Substrate pKa H ₂ O (DMSO)	Substrate pKa H ₂ O (DMSO)
HYDRO	OCARBONS	ESTERS	KETONES	• I
(Me) ₃ CH	53	O 24.5 (30.3)		Me
$(\mathrm{Me})_2\mathrm{CH}_2$	51	t-BuO Me	$ \begin{array}{ccc} \text{Me} & X \\ X = & H \end{array} (26.5) $	×
CH ₂ =CH ₂	50	r-BuO Ph (23.6)	Ph (19.8)	X= H (24.7) OMe (25.7)
CH₄	48 (56)	N+Me₃ (20.0)	SPh (18.7) COCH ₃ 9 (13.3)	NMe ₂ (27.5)
Δ	46	EtO O	SO ₂ Ph (12.5)	Br (23.8) CN (22.0)
CH ₂ =CHCH ₃	43 (44)	11 (14.2) Me	19-20 (27.1)	0
PhH	43	0 0 13 (15.7)	(28.3)	
PhCH ₃	41 (43)	MeO OMe OMe	i-Pr	
Ph ₂ CH ₂	33.5 (32.2)	s (20.9)	t-Bu O Me	n= 4 (25.1) 5 (25.8)
Ph ₃ CH	31.5 (30.6)	MeO S (20.9)	Ph	6 (26.4)
HCCH	24 23 (28.8)	0 V 1 Pb [30.2 (THF)]		7 (27.7) 8 (27.4)
PhCCH	23 (28.8)	Lio	Ph	4
$XC_6H_4CH_3$ X= p-CN	(30.8)	AMIDES	CH ₃ (24.4)	(28.1)
$p-NO_2$	(20.4)	Ph (26.6)	Ph (17.7) COCH ₃ (14.2)	
<i>p</i> -COPh	(26.9)	Me ₂ N 0 (25.9)	COPh (13.3)	(29.0)
Me		Me ₂ N SPh (25.9)	CN (10.2) F (21.6)	
	(26.1)	N ⁺ Me₃ (24.9)	OMe (22.85)	° (25.5)
Me Me		Lt ₂ N' O	OPh (21.1) SPh (16.9)	V V
	20 (20.1)	$ \begin{array}{c c} & CN \\ & (17.2) \end{array} $	SePh (18.6)	Λ
\sim	45 (40.0)	(18.2)	NPh ₂ (20.3) N ⁺ Me ₃ (14.6)	(32.4)
 /	15 (18.0)	Me ₂ N S Me	NO_2 (7.7)	Me Me
H ₂	~36	Me ₂ N Me (25.7)	SO ₂ Ph (11.4)	
		2		

 $^{^*}$ Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

Substrate	рКа	H ₂ O	(DMSO)	Substrate	pKa H	H ₂ O (DMSO)	Substrate	рКа	H ₂ O (DN	MSO)	Substrate pKa	H ₂ O	(DMSO)
	NITRILES				SULFIDES	S	SULFOXIDES			SULFO	NES		
X= H CH ₃ Ph COPh CONR ₂ CO ₂ Et CN OPh N+Me ₃ SPh SO ₂ Ph	2	11	(31.3) (32.5) (21.9) (10.2) (17.1) (13.1) (11.1) (28.1) (20.6) (20.8) (12.0)	PhSCH ₂ X X= Ph CN COC COP NO ₂ SPh SO ₂ F SO ₂ C POPI MeSCH ₂ SC PhSCHPh ₂ (PhS) ₃ CH (PrS) ₃ CH	h Ph CF ₃ 1 ₂ C ₂ Ph	(30.8) (20.8) (18.7) (16.9) (11.8) (30.8) (20.5) (11.0) (24.9) (23.4) (26.7) (22.8) (31.3)	Me X = Ph Ph Ph Solo She	JLFONI	(33 (27 (18 (2 ² UM	5.1) 9.0) 9.0) 9.0) 3.2) 4.5)	X= H CH ₃ t-Bu Ph CH=CH ₂ CH=CHPh CCH CCPh COPh COMe OPh N+Me ₃ CN NO ₂		(29.0) (31.0) (31.2) (23.4) (22.5) (20.2) (22.1) (17.8) (11.4) (12.5) (27.9) (19.4) (12.0) (7.1) (23.5)
HETER	O-ARO	MATI	cs	ş Me			Me S‡		(16	6.3)	SMe SPh		(20.5)
Ph			(28.2)	SH S (PhS) ₂ CHP	'h	(30.5)	SULFIMIDE:	S & SUI	LFOXIMIN	IES	SO ₂ Ph PPh ₂ O O Ph CHPh ₂		(12.2) (20.2) (22.3)
Ph			(30.1)	S X		(20.7)	Ph S R R= Me		(27	7.6) 0.7)	Me S Me		(31.1)
Ph			(26.7)	X= Ph CO ₂ N CN	⁄le	(30.7) (20.8) (19.1)	<i>j</i> -Pr O NTs Ph S Me		-	4.5)	CF ₃ Me		(18.8)
Ph Ph			(25.2)	RSCH₂CN R= Me Et		(24.3) (24.0)	O NMe Ph S Me O N+Me2		(33	3)	CF ₃ S i-Pr		(21.8)
Ph			(30.2)	<i>i</i> -Pr <i>t</i> -Bu		(23.6) (22.9)	O N⁺Me₂ Ph S Me O NTs			4.4)	CF ₃		(32.8)
$\sqrt[]{S}$ Ph			(30.0)	PhSCH=CH BuSH PhSH	-	(26.3) 10-11 (17.0) _{≈7} (10.3)	Ph S CH ₂ Cl		(20	0.7)	Et Et (PhSO ₂) ₂ CH ₂ Me		(14.3)

^{*}Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

pKa's of CH bonds at Heteroatom Substituted Carbon & References

Substrate pKa H ₂ C	(DMSO)	Substrate	рКа	H ₂ O (DMSO)	Substrate pKa	a H ₂ O	(DMSO)	REFERENCES
ETHERS	PHOSPHONIUM			NITRO			DMSO:	
CH ₃ OPh MeOCH ₂ SO ₂ Ph PhOCH ₂ SO ₂ Ph PhOCH ₂ CN MeO	(49) (30.7) (27.9) (28.1) (22.85)	P+H ₄ MeP+H ₃ Et ₃ P+H Ph ₃ P+CH ₃ Ph ₃ P+ <i>i</i> -Pr Ph ₃ P+CH ₂ C Ph ₃ P+CH ₂ C		-14 2.7 9.1 (22.4) (21.2) (6.2) (7.0)	RNO ₂ R= CH ₃ CH ₂ Me CHMe ₂ CH ₂ Ph CH ₂ Bn CH ₂ SPh CH ₂ SO ₂ Ph	≈10	(17.2) (16.7) (16.9) (12.2) (16.2) (11.8) (7.1)	JACS <u>97</u> , 7007 (1975) JACS <u>97</u> , 7160 (1975) JACS <u>97</u> , 442 (1975) JACS <u>105</u> , 6188 (1983) JOC <u>41</u> , 1883 (1976) JOC <u>41</u> , 1885 (1976) JOC <u>41</u> , 2786 (1976) JOC <u>41</u> , 2508 (1976) JOC <u>42</u> , 1817 (1977) JOC <u>42</u> , 321 (1977)
SELENIDES		PHOSPONATES & PHOSPHINE OXIDES		CH ₂ COPh o ₂ N ,		(7.7)	JOC <u>42,</u> 326 (1977) JOC <u>43,</u> 3113 (1978) JOC <u>43,</u> 3095 (1978)	
PhSe	(18.6)	(EtO) ₂ P X			n			JOC <u>43</u> , 1764 (1978) JOC <u>45</u> , 3325 (1980) JOC 45, 3305 (1980)
PhSeCHPh ₂	(27.5)	X= Ph CN		(27.6) (16.4)	n= 3 4		(26.9) (17.8)	JOC <u>45</u> , 3884 (1980) JOC <u>46</u> , 4327 (1981) JOC <u>46</u> , 632 (1981)
(PhSe) ₂ CH ₂ PhSeCH ₂ Ph	(31.3) (31.0)	CO₂Et	t	(18.6) (26.2)	5		(16.0)	JOC <u>46,</u> 3324 (1981) JOC <u>47,</u> 3224 (1982) JOC <u>47,</u> 2504 (1982)
PhSeCH=CHCH ₂ SePh	(27.2)	SiMe ₃		(28.8)	6 7		(17.9) (15.8)	Acc. Chem. Res. <u>21</u> , 456 (1988) Unpublished results of F. Bordwell
AMMONIUM	AMMONIUM		$ \begin{array}{ccc} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$		IMINES			Water: Advanced Org. Chem., 3rd Ed.
Me ₃ N+CH ₂ X X= CN	(20.6)	CN		(16.9)	Ph Ph		(24.3)	J. March (1985) Unpublished results of W. P. Jencks
SO ₂ Ph COPh	SO ₂ Ph (19.4)		PHOSPHINES			tone cou	units less nterparts	THF: JACS <u>110</u> , 5705 (1988)
CO ₂ Et CONEt ₂	(20.0) (24.9)	Ph ₂ PCH ₂ PF Ph ₂ PCH ₂ SC	_	(29.9) (20.2)	Streitwieser, JOC ⁻	1991, 56,	1989	See cited website below for additional data

^{*}Values <0 for H_2O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

DMSO Acidities of Common Heterocycles

Bordwell, ACR, **1988**, *21*, 456 Bordwell http://www.chem.wisc.edu/areas/reich/pkatable/index.htm

	N N		N N	N. N.	N,N	
23.0	19.8	18.6	16.4	13.9	11.9	18.0
\bigcap_{N} O	√NH O) N N O	NH O	NH O
24.0	20.8	15	.0	12.1	26.4	24.0
NH S	O NH	S N H	S H	Me SHH	Me N N+ Me	—н Me N+
13.3	14.8	11.8	29.4	16.5	18.4	24