| Substrate | pKa H ₂ O (DMSO) | Substrate pKa | H ₂ O(DMSO) | Substrate | pKa H₂O | (DMSO) | Substrate | pKa H ₂ O (DMSO) | |---|------------------------------|--|-----------------------------|--|--------------|------------------|---------------------------|-----------------------------| | INORG | ANIC ACIDS | CARBOXYLIC | ACIDS | ALC | COHOLS | | PROTONA | ATED SPECIES | | H ₂ O
H ₃ O ⁺ | 14.0 (32)
0.0 | х он | | HOH
MeOH | 14.0
15.5 | (31.2)
(27.9) | Ph N+OH | -12.4 | | H ₂ S
HBr | 7.00
-9.00 (0.9) | X= CH ₃
CH ₂ NO ₂
CH ₂ F | 4.76 (12.3)
1.68
2.66 | <i>i</i> -PrOH
<i>t</i> -BuOH | 16.5
17.0 | (29.3)
(29.4) | Ph | -7.8 | | HCI | -8.0 (1.8) | CH ₂ CI
CH₂Br | 2.86
2.86 | c-hex₃COH
CF₃CH₂OH | 24.0
12.5 | (23.5) | Ph CH ₃ | -6.2 | | HF
HOCI | 3.17 (15)
7.5 | CH ₂ I
CHCl ₂ | 3.12
1.29 | (CF ₃) ₂ CHOH
C ₆ H ₅ OH | | (18.2)
(18.0) | H
I | -6.5 | | HCIO₄
HCN | -10
9.4 (12.9) | CCl ₃
CF ₃
H | 0.65
-0.25
3.77 | m-O ₂ NC ₆ H ₄ (
p-O ₂ NC ₆ H ₄ (| OH 8.4 | (10.8) | Ph Me H Ot Me | -3.8 | | HN ₃
HSCN | 4.72 (7.9)
4.00 | HO
C ₆ H ₅ | 3.6, 10.3
4.2 (11.1) | <i>p</i> -OMeC ₆ H₄C
2-napthol | DH 10.2 | (19.1)
(17.1) | H
O+-H | -2.05 | | H ₂ SO ₃ | 1.9, 7.21 | <i>o</i> -O ₂ NC ₆ H₄
<i>m</i> -O ₂ NC ₆ H₄ | 2.17
2.45 | OXIMES & HY | DROXAMIC | · · · | Me ^{O†} H
⁺OH | -2.2 | | H₂SO₄ | -3.0, 1.99 | <i>p</i> -O ₂ NC ₆ H₄
<i>o</i> -CIC ₆ H₄ | 3.44
2.94 | N OH | 11.3 | (20.1) | Me S Me | -1.8 | | H ₃ PO ₄
HNO ₃ | 2.12, 7.21,
12.32
-1.3 | m -CIC $_6$ H $_4$ p -CIC $_6$ H $_4$ | 3.83 | Ph O Ph O H | 8.88
(NH) | (13.7) | N+-OH
Me | 0.79 (+1.63) | | HNO ₂
H ₂ CrO ₄ | 3.29
-0.98, 6.50 | <i>o</i> -(СН ₃) ₃ N+С ₆ Н
<i>p</i> -(СН ₃) ₃ N+С ₆ Н | I ₄ 3.43 | Ph | | (18.5) | Me—N—OH
I
Me | (+5.55) | | CH ₃ SO ₃ H | -2.6 (1.6) | <i>p</i> -OMeC ₆ H₄
o | 4.47 | Me | | | SULFINIC & | SULFONIC ACIDS | | CF₃SO₃H | -14 (0.3) | ROH OH | | PER | OXIDES | | 0,0 | | | NH ₄ CI | 9.24 | R= H | 4.25 | MeOOH | 11.5 | | Me S OH | -2.6 | | B(OH) ₃
HOOH | 9.23
11.6 | trans-CO ₂ H
cis-CO ₂ H | 3.02, 4.38
1.92, 6.23 | CH ₃ CO ₃ H | 8.2 | | O II S OH | 2.1 | ^{*}Values <0 for H_2O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods. The pka of water and H_3O^+ have been experimentally determined to be 14.0 and 0.0, respectively. Earlier values of 15.7 and -1.74, respectively are erroneous numbers proposed by scientists who made some errors in the calculated "rational" values. See: 1) *Helv. Chim. Acta* **2014**, *97*, 1. and 2) *J. Chem. Educ.* **2017**, *94*, 690. | Substrate pKa | a H ₂ O (DMSC |) Substrate pKa H ₂ O (DMSO) | Substrate pKa H ₂ O (DMSO) | Substrate pKa H ₂ O (DMSO) | |---|----------------------------|---|---|--| | PROTONATED | NITROGEN | AMINES | IMIDES | HYDROXAMIC ACID & AMIDINES | | N ⁺ H ₄ | 9.2 (10.5) | HN ₃ 4.7 (7.9) | | O
 8.88 (13.7) | | EtN+H ₃ | 10.6 | NH ₃ 38 (41)
<i>i</i> -Pr ₂ NH (36 THF)) | NH 8.30 NH (14.7) | Ph NOH (NH) | | i-Pr ₂ N+H ₂ | 11.05 | TMS2NH 26(THF) (30) | | NSO ₂ Ph | | Et ₃ N+H | 10.75 (9.00) | $PhNH_{2}$ (30.6) | Ac ₂ NH (17.9) | $_{\rm R}$ $_{\rm NH_2}$ Ph (15.0) | | PhN+H ₃ | 4.6 (3.6) | Ph ₂ NH (25.0) Me | SULFONAMIDE | | | PhN+(Me) ₂ H | 5.20 (2.50) | NCNH ₂ (16.9) NH (37) | 1000000000000000000000000000000000000 | HETEROCYCLES | | Ph ₂ N+H ₂ | 0.78 | NH (44) | Ph (16.1) | H (20.95) H (16.4) | | 2-napthal-N+H ₃ | 4.16 | Me Me | CF ₃ 6.3 (9.7) (MeSO ₂ NHPh (12.9) | | | $H_2NN^+H_3$ | 8.12 | H ₂ N —√ N (26.5) | GUANIDINIUM, | H (11.9) | | HON+H ₃ | 5.96 | | HYRDAZONES,- IDES, & -INES | NH (23.0) | | Quinuclidine N+-H | 11.0 (9.80) | AMIDES & CARBAMATES | N ⁺ H ₂ (13.6) NNH ₂ (21.6) | | | Morpholine o | rH ₂ 8.36 | O R= H (23.5)
CH_3 15.1 (25.5)
NH_2 Ph (23.3) | Me₂N NMe₂ Ph Me (18.9) | X = 0 (24) $X = S (13.3)$ $X = S (18.6)$ | | N-Me morpholine | 7.38 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Ph NHNH ₂ | H
X
= | | NO ₂ | | (urea) NH ₂ (26.9)
OEt (24.8) | $\begin{array}{ccc} \text{PhSO}_2 \text{NHNH}_2 & (17.2) \\ \text{PhNHNHPh} & (26.1) \\ \hline \end{array}$ | X = O(14.8) $X = S(11.8)$ $N = N (13.9)$ | | | -9.3 | O O 12 (20.5) | PROTONATED HETEROCYCLES | X Y-0 (34.4) | | NO ₂ | | Et N (21.6) O NH | N (12) (estimate) | X = 0 (24.4) $X = 0 (24.4)$ $X = 0 (27.0)$ | | DABCO | 2.97, 8.82
(2.97, 8.93) | o Bn Q | DBO NH | N (19.8) | | H ₃ N± +NH ₃ +ŅH ₃ | 6.90, 9.95 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | DMAP
Me ₂ N— NH 9.2 HN NH 6.95 | H (29.4) H (16.5) Me N+ Me Pr | | Proton Sponge | -9.0, 12.0
(, 7.50) | (15) O O O (12.1) | R R= H (PPTS) 5.21 (3.4)
t-Bu 4.95 (0.90)
Me 6.75 (4.46) | $N_{\text{N}^{+}} (18.4) \qquad N_{\text{N}^{+}} (24)$ | | PhCN+H | -10 | | R Cl, H 0.72 | Me (10.4) We ViPr | *Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods. ## pKa's of CH bonds in Hydrocarbons and Carbonyl Compounds | Substrate | pKa H ₂ O (DMSO) | Substrate pKa H ₂ O (DMSO) | Substrate pKa H ₂ O (DMSO) | Substrate pKa H ₂ O (DMSO) | |------------------------------------|-----------------------------|---|--|---------------------------------------| | HYDRO | OCARBONS | ESTERS | KETONES | • I | | (Me) ₃ CH | 53 | O 24.5 (30.3) | | Me | | $(\mathrm{Me})_2\mathrm{CH}_2$ | 51 | t-BuO Me | $ \begin{array}{ccc} \text{Me} & X \\ X = & H \end{array} (26.5) $ | × | | CH ₂ =CH ₂ | 50 | r-BuO Ph (23.6) | Ph (19.8) | X= H (24.7)
OMe (25.7) | | CH₄ | 48 (56) | N+Me₃ (20.0) | SPh (18.7)
COCH ₃ 9 (13.3) | NMe ₂ (27.5) | | Δ | 46 | EtO O | SO ₂ Ph (12.5) | Br (23.8)
CN (22.0) | | CH ₂ =CHCH ₃ | 43 (44) | 11 (14.2) Me | 19-20 (27.1) | 0 | | PhH | 43 | 0 0 13 (15.7) | (28.3) | | | PhCH ₃ | 41 (43) | MeO OMe OMe | i-Pr | | | Ph ₂ CH ₂ | 33.5 (32.2) | s (20.9) | t-Bu O Me | n= 4 (25.1)
5 (25.8) | | Ph ₃ CH | 31.5 (30.6) | MeO S (20.9) | Ph | 6 (26.4) | | HCCH | 24
23 (28.8) | 0 V
1 Pb [30.2 (THF)] | | 7 (27.7)
8 (27.4) | | PhCCH | 23 (28.8) | Lio | Ph | 4 | | $XC_6H_4CH_3$
X= p-CN | (30.8) | AMIDES | CH ₃ (24.4) | (28.1) | | $p-NO_2$ | (20.4) | Ph (26.6) | Ph (17.7) COCH ₃ (14.2) | | | <i>p</i> -COPh | (26.9) | Me ₂ N 0 (25.9) | COPh (13.3) | (29.0) | | Me | | Me ₂ N SPh (25.9) | CN (10.2)
F (21.6) | | | | (26.1) | N ⁺ Me₃ (24.9) | OMe (22.85) | ° (25.5) | | Me Me | | Lt ₂ N' O | OPh (21.1)
SPh (16.9) | V V | | | 20 (20.1) | $ \begin{array}{c c} & CN \\ & (17.2) \end{array} $ | SePh (18.6) | Λ | | \sim | 45 (40.0) | (18.2) | NPh ₂ (20.3)
N ⁺ Me ₃ (14.6) | (32.4) | | / | 15 (18.0) | Me ₂ N S Me | NO_2 (7.7) | Me Me | | H ₂ | ~36 | Me ₂ N Me (25.7) | SO ₂ Ph (11.4) | | | | | 2 | | | $^{^*}$ Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods. | Substrate | рКа | H ₂ O | (DMSO) | Substrate | pKa H | H ₂ O (DMSO) | Substrate | рКа | H ₂ O (DN | MSO) | Substrate pKa | H ₂ O | (DMSO) | |---|----------|------------------|--|---|---|--|--|---------|---|--|--|------------------|---| | | NITRILES | | | | SULFIDES | S | SULFOXIDES | | | SULFO | NES | | | | X= H CH ₃ Ph COPh CONR ₂ CO ₂ Et CN OPh N+Me ₃ SPh SO ₂ Ph | 2 | 11 | (31.3)
(32.5)
(21.9)
(10.2)
(17.1)
(13.1)
(11.1)
(28.1)
(20.6)
(20.8)
(12.0) | PhSCH ₂ X X= Ph CN COC COP NO ₂ SPh SO ₂ F SO ₂ C POPI MeSCH ₂ SC PhSCHPh ₂ (PhS) ₃ CH (PrS) ₃ CH | h
Ph
CF ₃
1 ₂
C ₂ Ph | (30.8)
(20.8)
(18.7)
(16.9)
(11.8)
(30.8)
(20.5)
(11.0)
(24.9)
(23.4)
(26.7)
(22.8)
(31.3) | Me X = Ph Ph Ph Solo She | JLFONI | (33
(27
(18
(2 ²
UM | 5.1)
9.0)
9.0)
9.0)
3.2)
4.5) | X= H
CH ₃
t-Bu
Ph
CH=CH ₂
CH=CHPh
CCH
CCPh
COPh
COMe
OPh
N+Me ₃
CN
NO ₂ | | (29.0)
(31.0)
(31.2)
(23.4)
(22.5)
(20.2)
(22.1)
(17.8)
(11.4)
(12.5)
(27.9)
(19.4)
(12.0)
(7.1)
(23.5) | | HETER | O-ARO | MATI | cs | ş Me | | | Me

 S‡ | | (16 | 6.3) | SMe
SPh | | (20.5) | | Ph | | | (28.2) | SH S
(PhS) ₂ CHP | 'h | (30.5) | SULFIMIDE: | S & SUI | LFOXIMIN | IES | SO ₂ Ph
PPh ₂
O O
Ph CHPh ₂ | | (12.2)
(20.2)
(22.3) | | Ph | | | (30.1) | S X | | (20.7) | Ph S R
R= Me | | (27 | 7.6)
0.7) | Me S Me | | (31.1) | | Ph | | | (26.7) | X= Ph
CO ₂ N
CN | ⁄le | (30.7)
(20.8)
(19.1) | <i>j</i> -Pr
O NTs
Ph S Me | | - | 4.5) | CF ₃ Me | | (18.8) | | Ph Ph | | | (25.2) | RSCH₂CN
R= Me
Et | | (24.3)
(24.0) | O NMe Ph S Me O N+Me2 | | (33 | 3) | CF ₃ S i-Pr | | (21.8) | | Ph | | | (30.2) | <i>i</i> -Pr
<i>t</i> -Bu | | (23.6)
(22.9) | O N⁺Me₂
Ph S Me
O NTs | | | 4.4) | CF ₃ | | (32.8) | | $\sqrt[]{S}$ Ph | | | (30.0) | PhSCH=CH
BuSH
PhSH | - | (26.3)
10-11 (17.0)
_{≈7} (10.3) | Ph S CH ₂ Cl | | (20 | 0.7) | Et Et (PhSO ₂) ₂ CH ₂ Me | | (14.3) | ^{*}Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods. ## pKa's of CH bonds at Heteroatom Substituted Carbon & References | Substrate pKa H ₂ C | (DMSO) | Substrate | рКа | H ₂ O (DMSO) | Substrate pKa | a H ₂ O | (DMSO) | REFERENCES | |---|---|---|---|---|---|--------------------|---|---| | ETHERS | PHOSPHONIUM | | | NITRO | | | DMSO: | | | CH ₃ OPh MeOCH ₂ SO ₂ Ph PhOCH ₂ SO ₂ Ph PhOCH ₂ CN MeO | (49)
(30.7)
(27.9)
(28.1)
(22.85) | P+H ₄ MeP+H ₃ Et ₃ P+H Ph ₃ P+CH ₃ Ph ₃ P+ <i>i</i> -Pr Ph ₃ P+CH ₂ C Ph ₃ P+CH ₂ C | | -14
2.7
9.1
(22.4)
(21.2)
(6.2)
(7.0) | RNO ₂ R= CH ₃ CH ₂ Me CHMe ₂ CH ₂ Ph CH ₂ Bn CH ₂ SPh CH ₂ SO ₂ Ph | ≈10 | (17.2)
(16.7)
(16.9)
(12.2)
(16.2)
(11.8)
(7.1) | JACS <u>97</u> , 7007 (1975)
JACS <u>97</u> , 7160 (1975)
JACS <u>97</u> , 442 (1975)
JACS <u>105</u> , 6188 (1983)
JOC <u>41</u> , 1883 (1976)
JOC <u>41</u> , 1885 (1976)
JOC <u>41</u> , 2786 (1976)
JOC <u>41</u> , 2508 (1976)
JOC <u>42</u> , 1817 (1977)
JOC <u>42</u> , 321 (1977) | | SELENIDES | | PHOSPONATES & PHOSPHINE OXIDES | | CH ₂ COPh
o ₂ N , | | (7.7) | JOC <u>42,</u> 326 (1977)
JOC <u>43,</u> 3113 (1978)
JOC <u>43,</u> 3095 (1978) | | | PhSe | (18.6) | (EtO) ₂ P X | | | n | | | JOC <u>43</u> , 1764 (1978)
JOC <u>45</u> , 3325 (1980)
JOC 45, 3305 (1980) | | PhSeCHPh ₂ | (27.5) | X= Ph
CN | | (27.6)
(16.4) | n= 3
4 | | (26.9)
(17.8) | JOC <u>45</u> , 3884 (1980)
JOC <u>46</u> , 4327 (1981)
JOC <u>46</u> , 632 (1981) | | (PhSe) ₂ CH ₂
PhSeCH ₂ Ph | (31.3)
(31.0) | CO₂Et | t | (18.6)
(26.2) | 5 | | (16.0) | JOC <u>46,</u> 3324 (1981)
JOC <u>47,</u> 3224 (1982)
JOC <u>47,</u> 2504 (1982) | | PhSeCH=CHCH ₂ SePh | (27.2) | SiMe ₃ | | (28.8) | 6
7 | | (17.9)
(15.8) | Acc. Chem. Res. <u>21</u> , 456 (1988)
Unpublished results of F. Bordwell | | AMMONIUM | AMMONIUM | | $ \begin{array}{ccc} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$ | | IMINES | | | Water: Advanced Org. Chem., 3rd Ed. | | Me ₃ N+CH ₂ X
X= CN | (20.6) | CN | | (16.9) | Ph Ph | | (24.3) | J. March (1985)
Unpublished results of W. P. Jencks | | SO ₂ Ph
COPh | SO ₂ Ph (19.4) | | PHOSPHINES | | | tone cou | units less
nterparts | THF:
JACS <u>110</u> , 5705 (1988) | | CO ₂ Et
CONEt ₂ | (20.0)
(24.9) | Ph ₂ PCH ₂ PF
Ph ₂ PCH ₂ SC | _ | (29.9)
(20.2) | Streitwieser, JOC ⁻ | 1991, 56, | 1989 | See cited website below for additional data | ^{*}Values <0 for H_2O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods. ## **DMSO Acidities of Common Heterocycles** Bordwell, ACR, **1988**, *21*, 456 Bordwell http://www.chem.wisc.edu/areas/reich/pkatable/index.htm | | N N | | N N | N. N. | N,N | | |-----------------|---------|-------------|--------|------------------|---------------------|----------| | 23.0 | 19.8 | 18.6 | 16.4 | 13.9 | 11.9 | 18.0 | | \bigcap_{N} O | √NH O | | |)
N
N
O | NH O | NH O | | 24.0 | 20.8 | 15 | .0 | 12.1 | 26.4 | 24.0 | | NH S | O
NH | S
N
H | S
H | Me SHH | Me
N
N+
Me | —н Me N+ | | 13.3 | 14.8 | 11.8 | 29.4 | 16.5 | 18.4 | 24 |